Application of e- beam lithography to FinFET based SRAMs

Sriram Balasubramanian

UC Berkeley
EE 290b Project
5/13/2003

Presentation outline

- Introduction to FinFETs
- SRAM Layout / design rules
- Lithography Process details
- Results
- Discussion Intermediate range scattering effect in dense layouts
- Conclusions

FinFETs based SRAMs

Advantages of FinFETs

- Continue MOSFET scaling: Can scale down to 10 nm
- Good control of short- channel effects

For SRAMs

- Potentially higher density
- Low leakage + high performance

SRAM Cell

Layout Parameters	Minimum size
Si fin line width	20 nm
M1 line width	30 nm
M1 spacing	30 nm
misalignment tolerance between (fin / gate layer)	20 nm
M1 contact size	50 nm
M1-M2 via	90 nm

SRAM Test Layout

Lithography Process

Process	Parameters	Comments
Spin AZPN114	(15%) at 2000 rpm,	thickness - 2000 Å
Crosslink bake	250 °C for 5 min	
Spin 1.8% HSQ	2000 rpm	HSQ thickness - 30 nm
Oven bake	170 °C for 5 min.	
Expose wafers in the nanowriter	Dose varying from 900 μ C/cm ² to 1800 μ C/cm ²	(5 x 5 matrix) in geometric progression
Develop	60 secs in LDD26W, DI rinse	
0 ₂ ICP directional etch	-100 °C for 60 secs	transfer HSQ pattern to the AZPN layer. SEM to measure linewidths
HSQ removal	5:1 buffered HF for 3 secs	Measure linewidths with SEM
AZPN Resist Ashing - isotropic etching	in O2 plasma (ashing) for 1min	Measure linewidths with SEM. initial line widths reduced by about 3 nm
Si fin RIE etching	Cl ₂ /HBr recipe	etched 2000 A -SEM to measure line widths

Isolated devices vs. dense arrays

 $856 \,\mu c/cm^2$

broken

21 nm

915 $\mu c/cm^2$

18 nm

23 nm

Pattern dependence

Fin vs. Gate isolated patterns

underexposed

Dose - $855 \mu C/cm^2$

overexposed

Dose - $827 \,\mu\text{C/cm}^2$

Pattern dependence (contd.)

Regions
(i) and (ii)

this higher dose

Position dependence

Array Corner - thinner lines

Array Center - thicker lines

Array Center has received a higher dose than the corners (SEM pictures taking after Si etch)

Lines after etching are thicker - resist feature was tapered

Discussion

- Backscattering is already corrected for in the layout.
- Proximity effects Dose is higher due to intermediate range scattering due to energetic secondary electrons.
 - Occurs in the range of 10x 100x nm.

Dose variation

center of dense array > corner of dense array > isolated devices

- Pattern dependence neighboring features get a higher dose if there is a large area exposed (like contact pads) nearby.
- Pattern dependent exposure of HSQ

Conclusions

 e- beam lithography is a powerful tool to fabricate nanoscale FinFET based SRAMs

 Patterning dense layouts with uniform feature sizes is non-trivial

- Intermediate range scattering effects become important
 - proximity correction may be necessary